在2017年的下半年谈论大数据似乎已经没有什么新意,甚至有些令人生厌了,毕竟这个词在中国已经流行太久,形形色色的产品、平台和公司早已贴满了大数据标签,而真正有价值的创新永远都是少数。

行业对于大数据的认知开始变得更加理性和客观,这是一种成熟的表现。但如果因此就认为大数据时代已经进入风平浪静的“发展期”,那么我们很可能会错过一场更加波澜壮阔的变革。

被忽视的非结构化数据

在过去几年,大数据产业更多关注的是如何处理海量、多源和异构的数据,并从中获得价值,而其中绝大多数都是结构化数据。不可否认,这些数据的体量足够巨大,然而我们今天必须承认这些只是冰山一角——行业公认的数据是,结构化数据仅占到全部数据量的20%,其余80%都是以文件形式存在的非结构化和半结构化数据,包括各种办公文档、图片、视频、音频、设计文档、日志文件、机器数据等,这些数据如同“暗网”一般地沉默着。可以想象,如果我们只阅读了一本书的五分之一,又如何正确理解这本书的含义呢?

1

非结构化数据占数据总量的80%以上

事实上,过去大家并非有意忽视非结构化数据,而是受到一些条件的制约和影响,不得不策略性地“放弃”这部分数据:

1、存储资源受限,大量数据被抛弃

非结构化数据体量巨大并且产生速度非常快,需要占用大量的存储资源,而存储成本降低也只是最近几年的事情,大量数据还没有加以分析和利用就被早早抛弃,以便为新产生的数据腾出空间;

2、数据体量大,获取和流转困难

对于已经保留下来的非结构化数据,真要去使用和处理它,依然是一项不讨好的“体力活儿”。由于体量、距离和网速的原因,非结构化数据并不容易获得,更不要说被灵活地放入业务分析和处理流程之中了;

3、缺乏处理分析的技术手段

非结构化数据的价值密度相对较低,缺乏有效的技术对非结构化数据进行处理和分析,面对海量文件数据束手无策。相比之下,结构化数据更容易入手,优先处理结构化数据也是非常合情合理的。

结构化数据的局限性

然而在对结构化数据进行分析和挖掘的过程中,我们越来越多地发现一些新的问题,甚至已经造成很大困扰:

1、结构化数据可能在“说谎”

结构化数据的优点在于便于统计和处理,包括结构化数据的形成本身就可能来自于统计。而统计并不能代表全部信息,必然存在一定程度的损耗,并带来误导。这也是为什么有些时候明明看似得出了合理的结论,却不能有效改进我们的业务。

相比之下,非结构化数据则“诚实”得多,通常包含了完整而连续的信息,其中充满了大量微小但却非常关键的细节,而这些数据将成为我们信息来源的重要组成部分,甚至会起到决定性的作用。

2、仅有结构化数据的世界简直太乏味了

人类先天是感性的生物,我们都喜欢丰富多彩的世界,它应该是立体而全方位的,包含了多种感官的信息和刺激,而不仅仅是枯燥的数字。很多时候我们发现,无论是从受众的接受程度还是所传递的信息量来看,即便是再酷炫的统计图表,也抵不过一分钟生动的视频。这一点从各大企业官方网站的变化中,就能明显地感受到。

另外,值得注意的是,人类对于结构化数据的运用由来已久。比如在企业级市场,包括ERP、CRM、MRP等管理软件一向都属于这一范畴,而所谓的大数据应用只是一个更高级的阶段而已。因此,从实际的技术发展和应用水平的角度来看,结构化数据市场是相当成熟的,也会愈发平稳。比如赛迪在今年5月发布的一份报告就显示,以ERP和CRM为代表的结构化数据市场增速放缓,相比之下非结构化数据市场的代表ECM(企业内容管理)则表现出强劲的增长动力。我想这也在一定程度上反映了市场的看法和整体的趋势。

2

2011-2016年CRM软件、ERP软件和ECM软件市场规模增速对比

(数据来源:CCID,2017.5)

未来世界将是非结构化的

世界随时都在发生变化,时至今日,对非结构化数据的管理和应用走到了一个重要关口。

一方面得益于存储成本的下降。随着存储技术和公有云平台的不断发展和成熟,用户可以拥有充足并且弹性可扩展的存储资源,用于存放更大量的非结构化数据,从而使得非结构化数据的积累和应用成为可能。

3

Hype Cycle for Storage Technologies,2016,Gartner

另一方面,新兴技术的快速发展也提高了行业对非结构化数据的重视程度。比如物联网、工业4.0、视频直播等领域的发展产生了更多的非结构化数据,而人工智能、机器学习、语义分析、图像识别等技术方向则需要大量的非结构化数据来开展工作,包括数据库系统也在不断向非结构化延伸。一推一拉之间,都要求我们以新的视角和方法去面对非结构化数据。

因此,未来对大数据的分析和应用将从结构化数据向非结构化数据转移,无论是消费级市场还是企业级市场,都会试图生产和采集更多的非结构化数据,并从中发掘商业价值。谁能够最先积累更多的数据,谁能够最先从中学到知识,谁就会领先一步,率先占领未知的空间。

非结构化数据带来的新机会

作为大数据产业的重要组成部分,甚至应该是产业的主体,非结构化数据一旦受到重视,注定将带来前所未有的发展机遇,吹响大数据时代下半场比赛的哨音。

在结构化数据为主导的阶段,大量的企业通过围绕结构化数据提供产品和服务,最终成长为行业巨头,并建立了稳固的竞争壁垒。而新兴的非结构化数据市场将给更多企业,尤其是创新型企业,带来百年一遇的弯道超车的机会。想一想特斯拉的电动汽车,你一定会理解我说的意思。

同时,由于非结构化数据的自身特征与结构化数据有着本质的差异,导致这场变革将是全链条的——从数据的生产、存储、流转、加工、处理,到最终的分析、应用和输出,无不和传统模式有着天壤之别。而在其中任何一个环节,都可能出现颠覆性的技术和模式,甚至形成独立的规模化赛道。因此,这一过程中所产生的机会和市场空间将是巨大的,我们甚至已经能够预见到一个百花齐放的新时代。

可以想象,当我们对非结构化数据有了足够的控制力,并能够充分利用的时候,我们得到的将是一个更加完整和富有生命力的世界。这个世界,事实上已经并不遥远。

关联阅读:

人工智能型网络攻击即将到来对未来网络安全意味着什么?

关注中国IDC圈官方微信:idc-quan 我们将定期推送IDC产业最新资讯

查看心情排行你看到此篇文章的感受是:


  • 支持

  • 高兴

  • 震惊

  • 愤怒

  • 无聊

  • 无奈

  • 谎言

  • 枪稿

  • 不解

  • 标题党
2023-08-24 09:38:00
大数据资讯 关注县域数据能力建设,抢占产数业务发展先机
2023年《数字中国建设整体布局规划》正式发布,数据能力已成为我国区域发展的底座和创新引擎。 <详情>
2023-03-30 11:15:07
云资讯 分布式时代已至,数据如何更有价值?
无论是连通各大集群内大型超大型数据中心,还是连接边缘侧小型、边缘数据中心,分布式云计算都已成为这张算力网络最重要的支撑。在此背景下,云计算步入分布式时代。 <详情>
2023-03-01 19:27:00
市场情报 FlagOpen大模型技术开源体系,开启大模型时代“新Linux”生态
大数据+大算力+强算法=大模型”是当前人工智能发展的主要技术路径。语言大模型ChatGPT成为现象级应用,人工智能进入普及应用的新时期。 <详情>
2023-01-09 09:36:46
大数据资讯 我国互联网广告数据匿名实施服务正式上线
《指南》形成的“技术保障、评估规制、过程控制”的互信制衡机制,适用于各类互联网广告业务,包括广告投放、程序化交易、广告监测等应用场景下的数据匿名化处理。 <详情>
2022-12-30 10:10:19
大数据资讯 中国移动磐维数据库正式发布
未来,随着数据库功能和稳定性等进一步增强,磐维数据库将在中国移动内外部的广泛应用中积累更多复杂业务场景实践经验,进一步提升数据库产品的核心技术能力,助力数智化转 <详情>