大数据分析

 

我们来讲一下应对大数据分析的几个方法。

第一、数字和趋势

看数字、看趋势是最基础进行展示相关数据管理信息的方式。

在数据分析中,教师可以同时通过直观的数字或趋势图表,迅速发展了解例如市场的走势、订单的数量、业绩完成的情况等等,从而更加直观的吸收数据管理信息,有助于提高决策的准确性和实时性。

第二、维度分解

当单数或宏观趋势,也需要打破不同维度的数据,以获得更精确的数据洞察。

在选择维度时,需要进行仔细思考其对于分析数据结果的影响。

第三、用户分群

对于谁符合一定的行为或背景资料,分类处理的用户,经常谈到的是用户聚类的手段。

也可以同时通过进行提炼某一群用户的特定环境信息,创建该群体对于用户的画像——例如访问购物网站、寄送地址在北京的用户,可以被归类为“北京”用户群体。

而对于“北京”的用户群体,可以进一步观察他们的频率购买的产品,类别,时间,所以创建了用户群体的肖像——在数据分析中,往往可以针对特定行为、特定背景的用户信息进行有针对性的用户管理运营和产品结构优化,效果会更加具有明显。

第四、转化漏斗

大多数企业的现金流,可以概括为一个漏斗。

漏斗进行分析是最常见的数据技术分析研究手段方法之一,无论是注册转化漏斗,还是电商下单的漏斗。

通过漏斗进行分析可以从先到后还原用户转化的路径,分析企业每一个转化节点的效率。其中,往往把重点放在三个要点:

第一、从开始到结束,整体转换效率是多少?

第二、每一步的转化率可以是多少?

第三、这一步走到原因在什么地方的损失?流失的用户提供符合哪些行为特征?

第五、行为轨迹

关注轨道的行为,以了解真实的用户行为。

数据索引本身往往只是抽象的真实情况,例如,网络分析等指标,如果你看一下用户访问和页面浏览量量,是断然不会完全了解用户如何使用您的产品——通过大数据技术手段,还原用户的行为轨迹,有助于增长团队关注用户的实际生活体验、发现具体分析问题,根据不同用户可以使用习惯设计企业产品、投放内容。

第六、留存分析

在人口红利的时代渐渐褪去,比获得一个新的用户远不如留住老客户的成本。

每一款产品,每一项工作服务,都应该核心企业关注的留存,确保做实每一个不同客户。

可以理解通过数据分析的情况下保留,通过分析用户的行为或行为组和回访之间的关联,想方设法提高保留。

目前,就是这六个方法,仅供参考。

关注中国IDC圈官方微信:idc-quan 我们将定期推送IDC产业最新资讯

查看心情排行你看到此篇文章的感受是:


  • 支持

  • 高兴

  • 震惊

  • 愤怒

  • 无聊

  • 无奈

  • 谎言

  • 枪稿

  • 不解

  • 标题党
2022-08-03 10:15:15
大数据技术 大数据分析技术和方法有哪些?
随着时代发展,大数据技术也日益完善。因而了解今日的大数据分析技术和方法有哪些,越来越有其必要性。 <详情>
2022-04-08 09:53:00
大数据技术 数据分析的十二个误区
自动化系统的执行方式不应该是有偏见的。但技术是由人类建立的,所以消除所有偏见几乎是不可能的。有些人认为分析和机器学习消除了人类的偏见。 <详情>
2021-12-28 15:10:26
大数据资讯 2022年数据分析的6大趋势
企业数据分析有两种方法。首先是从CRM和ERP等业务应用程序中获取数据,并将其导入数据仓库以提供给BI工具。现在,这些数据仓库正在迁移到云端,采用Snowflake等技术。 <详情>
2021-09-06 10:00:40
大数据资讯 预测分析和大数据分析的完整指南
企业是否希望加强和扩展自己的业务?还是开发产品?如果制定了一个从哪里开始的计划那很好。 <详情>
2021-08-17 10:34:07